Frage So erhalten Sie den linearen Index für ein numpy Array (sub2ind)


Matlab bietet die Funktion an sub2ind was "die linearen Index-Äquivalente zu den Zeilen- und Spalten-Indizes ... für eine Matrix ... zurückgibt."

ich brauche das sub2ind Funktion oder etwas ähnliches, aber ich habe keine ähnliche Python- oder Numpy-Funktion gefunden. Wie kann ich diese Funktionalität bekommen?

Dies ist ein Beispiel aus der Matlab-Dokumentation (gleiche Seite wie oben):

Example 1

This example converts the subscripts (2, 1, 2) for three-dimensional array A 
to a single linear index. Start by creating a 3-by-4-by-2 array A:

rng(0,'twister');   % Initialize random number generator.
A = rand(3, 4, 2)

A(:,:,1) =
    0.8147    0.9134    0.2785    0.9649
    0.9058    0.6324    0.5469    0.1576
    0.1270    0.0975    0.9575    0.9706
A(:,:,2) =
    0.9572    0.1419    0.7922    0.0357
    0.4854    0.4218    0.9595    0.8491
    0.8003    0.9157    0.6557    0.9340

Find the linear index corresponding to (2, 1, 2):

linearInd = sub2ind(size(A), 2, 1, 2)
linearInd =
    14
Make sure that these agree:

A(2, 1, 2)            A(14)
ans =                 and =
     0.4854               0.4854

14
2018-03-05 17:22


Ursprung


Antworten:


Ich denke du willst es benutzen np.ravel_multi_index. Mit der Zero-basierten Indizierung von numpy und unter Berücksichtigung, dass Matlab-Arrays Fortran-Stil sind, ist das Äquivalent zu Ihrem Matlab-Beispiel:

>>> np.ravel_multi_index((1, 0, 1), dims=(3, 4, 2), order='F')
13

Nur damit Sie verstehen, was vor sich geht, können Sie das gleiche Ergebnis mit dem Skalarprodukt Ihrer Indizes und den Schritten des Arrays erhalten:

>>> a = np.random.rand(3, 4, 2)
>>> np.dot((1, 0, 1), a.strides) / a.itemsize
9.0
>>> np.ravel_multi_index((1, 0, 1), dims=(3, 4, 2), order='C')
9
>>> a[1, 0, 1]
0.26735433071594039
>>> a.ravel()[9]
0.26735433071594039

21
2018-03-05 17:52



So habe ich das Problem für mich gelöst, umgeschrieben, dass es dem obigen Beispiel ähnlich ist.

Die Hauptidee besteht darin, ein Helfer-Array mit den Indizes zu erstellen arange und reshape.

In [1]: import numpy as np

In [2]: A = np.random.rand(3,4,2)

In [3]: A
Out[3]: 
array([[[ 0.79341698,  0.55131024],
        [ 0.29294586,  0.22209375],
        [ 0.11514749,  0.15150307],
        [ 0.71399288,  0.11229617]],

       [[ 0.74384776,  0.96777714],
        [ 0.1122338 ,  0.23915265],
        [ 0.28324322,  0.7536933 ],
        [ 0.29788946,  0.54770654]],

       [[ 0.13496253,  0.24959013],
        [ 0.36350264,  0.00438861],
        [ 0.77178808,  0.66411135],
        [ 0.26756112,  0.54042292]]])

In [4]: helper = np.arange(3*4*2)

In [5]: helper
Out[5]: 
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
       17, 18, 19, 20, 21, 22, 23])

In [6]: helper = helper.reshape([3,4,2])

In [7]: helper
Out[7]: 
array([[[ 0,  1],
        [ 2,  3],
        [ 4,  5],
        [ 6,  7]],

       [[ 8,  9],
        [10, 11],
        [12, 13],
        [14, 15]],

       [[16, 17],
        [18, 19],
        [20, 21],
        [22, 23]]])

In [8]: linear_index = helper[1,0,1]

In [9]: linear_index
Out[9]: 9

Beachten Sie, dass:

  • Zeilen und Spalten sind in Numpy in Bezug auf Matlab geschaltet.
  • Matlab startet Indizes mit 1, Python und Numpy mit 0.

1
2018-03-05 17:22